

Extracting Heart rate from Cell Phone Videos Using

Fast Fourier Transform (FFT) and Blind Source

Separation (BSS) with Active Face Tracking using

MATLAB

Michael Bassis

Electromechanical Engineer

Wentworth Institute of Technology

Boston, Massachusetts

bassism@wit.edu

Abstract—In the medical field, there are times when normal

contact-based measurements are not ideal due to contamination

or other factors that can affect readings. This has led to research

into methods for reading vital signs in a contactless method. This

paper presents results from the research and implementation of

a contactless method for measuring heart rate using video from

a cell phone camera. This method also implements a face

tracking algorithm to make the system more robust. The success

of this project will be measured against reference heart rates

taken at the same time as the video sample to compute algorithm

accuracy.

Keywords—heart rate, digital signal processing, video, FFT,

fastICA, BSS, face tracking

I. INTRODUCTION

The need for contactless measurement of vital signs is
nothing new. Vital signs are incredibly important in
understanding the condition of the patient and how their body
reacts to disease and the treatment they are receiving.
Currently, most of these measurements must be taken with
sensors which contact the patient. Measurement methods that
require contact can be physically intrusive, cause irritation to
the patient, spread unnecessary infections, and be
cumbersome for the mobility of the patient or the health care
workers who treat them. This paper will specifically focus on
the heart rate but is also easily applicable to respiratory rate.

Historically, there have been two different methods for
reading heart rate without contact. These two methods are
radio frequency (RF) imaging and camera-based imaging,
which both have their own advantages and disadvantages.
While this paper will address RF, the primary focus will be on
the camera-based imaging method for detecting heart rate in
subjects.

II. THEORY OF OPERATION

The driving principle that both RF and camera-based
imaging utilize for detecting heart rate is the small movements
of the body that can be measured and processed to extract a
heart rate frequency [1].

For RF, an unmodulated RADAR signal is reflected off
the subject and the phase response is measured to determine
the movement of the subject’s body. The heart rate would then
be determined by finding the periodicity of distance values
which would correspond to the small movement due to cardiac
activity.

In camera-based imaging, a region of interest (ROI) is
defined for the image collected from a camera and the
intensity of light signals in the ROI help detect the small

movements of the body due to cardiac activity [2]. In a similar
fashion to the RF method, the periodicity of these signals is
examined, and a heart rate is extracted.

As previously stated, it is very easy for the method
provided to be altered for respiratory rate over heart rate. This
is because both bodily functions are periodic and result in
small movements in the body. To distinguish between them a
filter is added to remove frequencies that would fall out of the
range of the target vital sign. For example, to read heart rate,
a Butterworth bandpass filter can be implemented that only
keeps frequencies between 0.8 and 3 Hz. This frequency range
corresponds to a heart rate of 40 - 180 BPM which is a
reasonable range for human heart rate, but also excludes
frequencies in which respiratory function would appear.

III. IMPLEMENTATION OF THEORY

To test the proposed theory of operation, data was
collected in the form of 30 second videos of subjects to
measure their heart rate. At the same time their heart rate was
collected in conventional manner using devices with heart rate
sensors when applicable or measuring manually via the wrist
when other methods were not available. The video analysis
was performed in MATLAB. First, the face tracking algorithm
was implemented to create the ROI for each face using the
Computer Vision Toolbox. The ROI was positioned so that it
could collect data from the tip of each subject’s nose. Then,
the red component of the ROI was selected for further
analysis. Red was chosen because it can be used to detect color
change due to more blood in the area and light intensity which
would correspond to head position.

The next step is where the two methods deviate. Two
separate methods were implemented and tested to compare
their ability to detect a heart rate close to that of the ground
truth taken during recording. The two methods used were Fast
Fourier Transform (FFT) and Blind Source Separation (BSS)
using fast Independent Component Analysis (fastICA) [3].
Both methods are similar in their ability to detect the periodic
heart rate signal but differ in exactly how they arrive at that
answer.

The FFT was implemented first. The FFT converts the
ROI data into the frequency domain and then applies a 2nd
order Butterworth filter to remove the extra frequencies which
would fall out of a reasonable range of heart rate. The peaks
of the filtered signal were then analyzed, and the heart rate can
be extracted. Figure 2 shows an example of the process below.

Rami Hanna

Electromechanical Engineer

Wentworth Institute of Technology

Boston, Massachusetts

hannar1@wit.edu

Figure 1: FFT Flowchart

Figure 2: FFT Method, Subject BPM 79

Subplot one is a still frame image of the ROI. Subplot two shows

the ROI superimposed onto the original video frame. Subplot three

shows the bounding box created by the face tracking algorithm.

Subplot four shows the graph over time of the heart rate in BPM.

The graph shows individual data points in addition to a moving

average and the ground truth reference heart rate.

The BSS method via fastICA was implemented second.
This method uses the fastICA function to analyze the image
input from the grayscale ROI. fastICA is a technique for
separating a multivariate signal into independent, non-
Gaussian signals. It works by finding the directions in the
signal that have high kurtosis (i.e., high peaks and sharp
edges), which are likely to correspond to the underlying
independent signals. In the context of this application, those
high kurtosis components would be the due to the cardiac
activity of the subject. The output of the fastICA can then be
used to determine the effective heart rate of the subject being
recorded. Figure 4 shows an example of the fastICA process
on the same subject below.

Figure 3: fastICA Flowchart

Figure 4: fastICA Method, Subject 79 BPM

Subplot one is a still frame image of the ROI. Subplot two shows

the ROI superimposed onto the original video frame. Subplot three

shows the bounding box created by the face tracking algorithm.

Subplot four shows the graph over time of the heart rate in BPM.

The graph shows individual data points in addition to a moving

average and the ground truth reference heart rate.

IV. RESULTS BETWEEN METHODS

To compare the efficacy of both algorithms against the
ground truth and against each other, 16 trials were run
comparing detected heart rate and time required for
computation. This data was tabulated into table 1 below.

Table 1: FFT vs fastICA Performance

Trial

Ground
Truth

Heart
Rate
BPM

%
Error

FFT
Execution
Time

fastICA
Execution
Time

1 72 74.60 3.62 284.6 312.5

2 108 57.71 46.6 291.9 313.8

3 108 127.2 17.8 387.9 349.1

4 79 72.13 8.69 368.9 366.8

5 108 84.59 21.7 360.5 365.8

6 76 76.64 0.85 372.1 364.9

7 108 124.9 15.7 351.7 373.1

8 88 60.39 31.4 279.5 314.7

9 85 92.31 8.60 1290.3 1311.1

10 79 46.39 41.3 698.2 750.4

11 104 77.54 25.5 330.6 343.6

12 63 104.8 66.3 1143.9 1223.9

13 88 70.57 19.8 209.5 305.4

14 68 89.81 32.1 267.9 377.7

15 85 88.23 3.73 423.9 452.6

16 130 100.0 26.1 411.6 416.7

Figure 5: Accuracy of Samples

Figure 6: Execution Time vs. Test Samples

The data from the table indicates that fastICA and FFT
based algorithm have nearly identical performance, with the
only difference being small discrepancies in the execution
time for each sample. The FFT has an average execution time
of 467.07 seconds while the fastICA has an execution time of
496.39 seconds. So, on average the FFT method is 29.32
seconds faster.

The FFT method was implemented first, and offered a
76.1% accuracy over the trials, with a minimum accuracy of
34.7% and a maximum accuracy of 99.16% for the average
heart rate during the video. Since this performance was
lackluster in accuracy, the fastICA method was implemented
to see if it would provide more accurate heart rate readings.
Contrary to our initial hypothesis, the fastICA method
performed identically to the FFT method with the only
difference in the two methods being a slightly longer average
execution time for the fastICA method. This result makes
logical sense. The FFT is an optimized DFT, and this task is
the perfect application for it. The fastICA is another powerful
function, however it is competing against the optimized tool
for the job so it makes sense that it would lag.

Based on the new insight of the similar performance, a
new hypothesis was formed: since both techniques use
different methods for deriving the heart rate signal from the
subject, it was hypothesized that the error may not be from the
analysis techniques themselves, but from other sources like
lighting abnormalities or the face tracking algorithm
redefining the ROI. Further experimentation with more
constant light sources or a static subject could be explored to
test this new hypothesis.

V. CONCLUSION

In conclusion, this paper has determined that both FFT and
fastICA based heart rate detection show great potential for
future contactless measurement of periodic vital signs
especially when paired with a face tracking algorithm. In the
future, the results of this study will benefit from better face
tracking algorithms and better lighting. Face tracking will
benefit the project because one of the accuracy limiting factors
for this project was the ROI placement. Different sized faces
and framing of the camera picture can affect what part of the
face the ROI ends up collecting data from. A face tracking
algorithm that can detect more specific details like forehead
space not covered with hair or shadows, or an algorithm that
can avoid placing the ROI on a region with glasses would
improve the readings collected during the video. The lighting
is also key in performance since the algorithm detects
differences in the amount of light interacting with the area of

the ROI. Inconsistent lighting due to shadows or flickering
lights can interfere with readings, so a constant light source
would be beneficial for the next iteration of the research.
Another potential route for the next phase of research would
be spatial and temporal filtering. Spatial and temporal filtering
can be used to target and amplify the movements and color
shifts that are being examined for heart rate detection.

ACKNOWLEDGMENTS

This work was completed with the gracious assistance of
students providing video samples for algorithm testing and the
guiding challenge provided by Professor Federica Aveta.

REFERENCES

[1] H Abuella and S Ekin, “Wireless Vital Sisns Monitoring System using
Visible Light Sensing (VLS).” June 2018,
https://www.slideshare.net/mybalaraja/visible-light-138335083

[2] Lee, Cho, Lee, and Whang, “Vision-Based Measurement of Heart Rate
from Ballistocardiographic Head Movements Using Unsupervised
Clustering,” Sensors, vol. 19, no. 15, p. 3263, Jul. 2019, doi:
https://doi.org/10.3390/s19153263.

[3] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated
cardiac pulse measurements using video imaging and blind source
separation,” Optics Express, vol. 18, no. 10, p. 10762, May 2010, doi:
https://doi.org/10.1364/oe.18.010762.

[4] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W.
Freeman, “Eulerian video magnification for revealing subtle changes
in the world,” ACM Transactions on Graphics, vol. 31, no. 4, pp. 1–8,
Jul. 2012, doi: https://doi.org/10.1145/2185520.2335416.

[5] U. Upadhyay, “Heartrate Detection using Camera,” Intel Software
Innovators, Jun. 03, 2019. https://medium.com/intel-software-
innovators/heartrate-detection-using-camera-d34b3289e272 (accessed
Apr. 17, 2023).

[6] W. Verkruysse, L. O Svaasand, and J. S. Nelson, “Optica Publishing
Group,” opg.optica.org, Dec. 12, 2008.
https://opg.optica.org/oe/fulltext.cfm?uri=oe-16-26-
21434&id=175396 (accessed Apr. 17, 2023).

[7] A. Ahmed, A. El, and R. Elnakib, “Heart rate measurement using
webcam Supervised by.” Accessed: Apr. 17, 2023. [Online]. Available:
https://engfac.mans.edu.eg/images/files/engpdf/projects/comm/pro2/h
eart-rate-book.pdf

APPENDIX

Table 2: Work Allocation Table

Task Michael Bassis

Contribution

Rami Hanna

Contribution

Research 50% 50%

Coding 30% 70%

Report Writeup 90% 10%

Class
Presentation

10% 90%

Table 3: MATLAB add-ons Utilized.

Computer Vision Toolbox

Signal Processing Toolbox

PCA and ICA Data Package

heartrate_fft.m

clear

close all

clc

tic

% Ramiface_1,2 were recorded at

79 bpm

% Create CascadeObjectDetector

object

faceDetector =

vision.CascadeObjectDetector();

filename = 'rami_130.MOV';

% Read video file

video =

VideoReader(['C:\Users\hannar1\

OneDrive - Wentworth Institute

of Technology\Dsp\',

filename]);

% video =

VideoReader('IMG_4172.mov');

frameRate = video.FrameRate;

max_frames = video.Duration *

frameRate;

max_frames = cast(max_frames,

'uint32');

matches = regexp(filename,

'_\d+\.', 'match');

if ~isempty(matches)

 ground_truth =

str2double(matches{1}(2:end-

1));

else

 % handle case where no

match is found

end

ground_truth = ground_truth *

ones(1, max_frames);

time = linspace(0,

video.Duration, max_frames);

heartrates = zeros(1,

floor(max_frames));

time_current = zeros(1,

ceil(video.Duration));

% Figure for visualization

figure

for i = 1 : floor(max_frames)

 % Read current frame

 frame = readFrame(video);

 % Detect face in the frame

 try

 bboxes =

step(faceDetector, frame);

 catch ME

 warning(['Error

detecting face in frame ',

num2str(i), ': ', ME.message]);

 continue;

 end

 % Check if any face is

detected

 if isempty(bboxes)

 continue;

 end

 if size(bboxes, 1) > 1 % if

multiple faces are detected

 disp('mult faces')

 bbox_areas = bboxes(:,

3) .* bboxes(:, 4); % compute

areas of all bounding boxes

 [~, idx] =

max(bbox_areas); % get index of

largest face

 bbox = bboxes(idx, :);

% select the largest face

 else % if only one face is

detected

 bbox = bboxes;

 end

 % compute the horizontal

center of face

 x_center = bbox(1) +

bbox(3) / 2;

 % Define new bounding box

for forehead

 forehead_box = [x_center-

20, bbox(2) + bbox(4)*.45, 30,

30];

 % Extract ROI from forehead

bounding box

 forehead_roi =

imcrop(frame, forehead_box);

 % Convert ROI to red

channel

 if ndims(forehead_roi) == 3

% roiGray =

rgb2gray(forehead_roi);

% roiGray =

im2double(roiGray);

 roiRed =

forehead_roi(:,:,1);

 roiRed =

im2double(roiRed);

 roiRed = mean(roiRed);

 else

 disp('ROI is not a 3D

matrix')

 % continue;

 end

 % Apply a bandpass filter

to the pulse signal

 % Define the passband

frequency range (e.g., 0.8-3 Hz

= 40 - 180 bpm)

 fpass = [0.8, 3];

 fs = frameRate;

 % Design a Butterworth

bandpass filter

 [b, a] = butter(2, fpass /

(fs / 2), 'bandpass');

 % Apply the filter to the

pulse signal

 roiFiltered = filtfilt(b,

a, roiRed);

 % Apply windowing to obtain

short stationary segments

 winLen = round(fs * 5 /

60); % Length of window = 5

heartbeats

 overlap = round(winLen /

2); % 50% overlap

 [nSamples, nWindows] =

size(buffer(roiFiltered(1:lengt

h(roiFiltered)), winLen,

overlap, 'nodelay'));

 % Apply FFT to each window

 fftWindows =

fft(buffer(roiFiltered(1:length

(roiFiltered)), winLen,

overlap, 'nodelay'));

% fftWindows =

fft(roiFiltered);

 % Compute the magnitude

spectrum of each window

 magSpec =

abs(fftWindows(1:round(winLen /

2 + 1), :));

% magSpec =

abs(fftWindows);

 % Identify the peak

frequency in each window

 [~, loc] = max(magSpec);

 % Compute the

corresponding frequencies

 f = linspace(0, fs / 2,

winLen / 2 + 1);

 % Convert the peak

locations to frequencies

 peakFreqs = f(loc);

 % Compute the mean peak

frequency across all windows

 meanPeakFreq =

mean(peakFreqs);

 % Convert the mean peak

frequency to heart rate in

beats per minute (BPM)

 heartRate = meanPeakFreq *

60;

 % Store the heart rate and

the current time in their

respective arrays

 heartrates(i) = heartRate;

 time_current(i) = time(i);

 % display ROI for

visualization

 imgWithROI =

insertShape(frame, 'rectangle',

forehead_box, 'LineWidth', 10,

'Color', 'green');

 imgWithBBOX =

insertShape(frame, 'rectangle',

bbox, 'LineWidth', 10, 'Color',

'magenta');

 clf; % clear previous data

 subplot(2,2,1)

 imshow(forehead_roi);

 subplot(2,2,2)

 imshow(imgWithROI)

 subplot(2,2,3)

 imshow(imgWithBBOX)

 subplot(2,2,4)

 % Append the new data to

the plot

 % Set the window size for

the moving average

 windowSize =

max_frames*.10;

 % Calculate the moving

average of the heart rates

 movingAvg =

movmean(heartrates(1:i),

windowSize);

 try

 if(heartRate < 40 &

heartrates(1)>0 & heartrates(i-

1)>0)

 disp('Issue with

ROI. Heartrate of Frame:',

num2str(i), 'is heartrates(i-

1)')

 heartrates(i) =

heartrates(i-1); % there is

currently a bug where the ROI

isn't distinguished properly

resulting in a non-3D matrix,

so the heartrate at the

iteration is set to the

movingAvg(i-1)

 continue;

 else

 heartrates(i) =

heartRate;

 end

 catch

 continue

 end

 disp(['Frame: ',

num2str(i), ' Heart rate: ',

num2str(heartRate), ' bpm']);

 time_current(i) =

video.CurrentTime;

 % Plot the heart rates and

the moving average

 plot(time_current(1:i),

heartrates(1:i), '*');

 hold on;

 plot(time_current(1:i),

movingAvg, 'LineWidth', 2);

 hold on;

plot(time_current(1:i),ground_t

ruth(1:i), 'LineWidth', 2,

'Color', 'black');

 titlestring = ['Heartrate

(bpm) vs. Time (s) (FFT) |

Average (bpm): ',

num2str(mean(heartrates(1:i)))]

;

 title(titlestring);

 xlabel('Time (s)');

 xlim([0 time_current(i)])

 ylabel('Heartrate (bpm)');

 legend('Heartrate (bpm)',

['Moving Average (',

num2str(round(movingAvg(i))), '

bpm)'], ['Ground truth (',

num2str(ground_truth(1)), '

bpm)']);

 ylim([48 180])

 drawnow;

% pause(.1);

end

% Compute the mean heart rate

across all frames

meanHeartRate =

mean(heartrates);

perDiff = (abs(meanHeartRate -

ground_truth)/ground_truth)*100

;

timeElapsed = toc;

disp(['Time for execution: ',

num2str(timeElapsed)]);

disp(['Average heart rate: ',

num2str(meanHeartRate)]);

disp(['Percent Difference: ',

num2str(perDiff)]);

heartrate_WIP2.m

clear

close all

clc

tic

% Ramiface_1,2 were recorded at

79 bpm

% Create CascadeObjectDetector

object

faceDetector =

vision.CascadeObjectDetector();

filename = 'annie_79.mov';

% Read video file

video =

VideoReader(['C:\Users\hannar1\

OneDrive - Wentworth Institute

of Technology\Dsp\',

filename]);

% video =

VideoReader('IMG_4172.mov');

frameRate = video.FrameRate;

max_frames = video.Duration *

frameRate;

max_frames = cast(max_frames,

'uint32');

matches = regexp(filename,

'_\d+\.', 'match');

if ~isempty(matches)

 ground_truth =

str2double(matches{1}(2:end-

1));

else

 % handle case where no

match is found

end

ground_truth =

ground_truth*ones(1,max_frames)

;

time = linspace(0,

video.Duration, max_frames);

heartrates = zeros(1,

floor(max_frames));

time_current =

zeros(1,ceil(video.Duration));

figure % create figure

for i= 1:floor(max_frames)

 frame = readFrame(video);

 % Detect face in the frame

 try

 bboxes =

step(faceDetector, frame);

 catch ME

 warning(['Error

detecting face in frame ',

num2str(i), ': ', ME.message]);

 continue;

 end

 % Check if any face is

detected

 if isempty(bboxes)

 continue;

 end

 if size(bboxes, 1) > 1 % if

multiple faces are detected

 disp('mult faces')

 bbox_areas = bboxes(:,

3) .* bboxes(:, 4); % compute

areas of all bounding boxes

 [~, idx] =

max(bbox_areas); % get index of

largest face

 bbox = bboxes(idx, :);

% select the largest face

 else % if only one face is

detected

 bbox = bboxes;

 end

 % compute the horizontal

center of face

 x_center = bbox(1) +

bbox(3) / 2;

 % define new bounding box

for forehead

 forehead_box = [x_center-

20, bbox(2) + bbox(4)*.45, 30,

30];

 % extract ROI from forehead

bounding box

 forehead_roi =

imcrop(frame, forehead_box);

 % convert ROI to grayscale

and normalize pixel values to

range [0,1]

 if ndims(forehead_roi) == 3

% roiGray =

rgb2gray(forehead_roi);

% roiGray =

im2double(roiGray);

 roiRed =

forehead_roi(:,:,1);

 roiRed =

im2double(roiRed);

 roiGray = mean(roiRed);

 else

 disp('ROI is not a 3D

matrix')

 % continue;

 end

 % apply the BSS algorithm

(e.g., FastICA or SOBI) to

separate the pulse signal

 % from the other sources of

noise and motion artifacts

 [icasig, A, W] =

fastICA(roiGray,min(length(roiG

ray(1)),length(roiGray(2))));

% [icasig, A, W] =

fastICA(roiGray',2);

% [icasig] =

fastICA(roiGray,2);

 % select the first

component as the pulse signal

 pulseSignal = icasig(1,:);

 % Apply a bandpass filter

to the pulse signal

 % define the passband

frequency range (e.g., 0.8-3

Hz)

 fpass = [0.8, 3];

 fs = frameRate;

 % design a Butterworth

bandpass filter

 [b,a] =

butter(2,fpass/(fs/2),'bandpass

');

 % apply the filter to the

pulse signal

 pulseSignalFiltered =

filtfilt(b, a, pulseSignal);

 % Apply windowing to

obtain short stationary

segments

 winLen = round(fs * 5 /

60); % Length of window = 5

heartbeats

 overlap = round(winLen /

2); % 50% overlap

 [nSamples, nWindows] =

size(buffer(pulseSignalFiltered

(1:length(pulseSignalFiltered))

, winLen, overlap, 'nodelay'));

 % Apply FFT to each window

 fftWindows =

fft(buffer(pulseSignalFiltered(

1:length(pulseSignalFiltered)),

winLen, overlap, 'nodelay'));

% fftWindows =

fft(roiFiltered);

 % Compute the magnitude

spectrum of each window

 magSpec =

abs(fftWindows(1:round(winLen /

2 + 1), :));

% magSpec =

abs(fftWindows);

 % Identify the peak

frequency in each window

 [~, loc] = max(magSpec);

 % Compute the

corresponding frequencies

 f = linspace(0, fs / 2,

winLen / 2 + 1);

 % Convert the peak

locations to frequencies

 peakFreqs = f(loc);

 % Compute the mean peak

frequency across all windows

 meanPeakFreq =

mean(peakFreqs);

 % Convert the mean peak

frequency to heart rate in

beats per minute (BPM)

 heartRate = meanPeakFreq *

60;

 % Store the heart rate and

the current time in their

respective arrays

 heartrates(i) = heartRate;

 time_current(i) = time(i);

 % display ROI for

visualization

 imgWithROI =

insertShape(frame, 'rectangle',

forehead_box, 'LineWidth', 10,

'Color', 'green');

 imgWithBBOX =

insertShape(frame, 'rectangle',

bbox, 'LineWidth', 10, 'Color',

'magenta');

 % display detected heart

rate

 disp(['Frame: ',

num2str(i), ' Heart rate: ',

num2str(heartRate), ' bpm']);

 clf; % clear previous data

 subplot(2,2,1)

 imshow(forehead_roi);

 subplot(2,2,2)

 imshow(imgWithROI)

 subplot(2,2,3)

 imshow(imgWithBBOX)

 subplot(2,2,4)

 % Append the new data to

the plot

 % Set the window size for

the moving average

 windowSize =

max_frames*.10;

 % Calculate the moving

average of the heart rates

 movingAvg =

movmean(heartrates(1:i),

windowSize);

 try

 if(heartRate < 40 &

heartrates(1)>0 & heartrates(i-

1)>0)

 disp('Issue with

ROI. Heartrate of Frame:',

num2str(i), 'is heartrates(i-

1)')

 heartrates(i) =

heartrates(i-1); % there is

currently a bug where the ROI

isn't distinguished properly

resulting in a non-3D matrix,

so the heartrate at the

iteration is set to the

movingAvg(i-1)

 continue;

 else

 heartrates(i) =

heartRate;

 end

 catch

 continue

 end

 time_current(i) =

video.CurrentTime;

 % Plot the heart rates and

the moving average

 plot(time_current(1:i),

heartrates(1:i), '*');

 hold on;

 plot(time_current(1:i),

movingAvg, 'LineWidth', 2);

 hold on;

plot(time_current(1:i),ground_t

ruth(1:i), 'LineWidth', 2,

'Color', 'black');

 titlestring = ['Heartrate

(bpm) vs. Time (s) (BSS/ICA) |

Average (bpm): ',

num2str(mean(heartrates(1:i)))]

;

 title(titlestring);

 xlabel('Time (s)');

 xlim([0 time_current(i)])

 ylabel('Heartrate (bpm)');

 legend('Heartrate (bpm)',

['Moving Average (',

num2str(round(movingAvg(i))), '

bpm)'], ['Ground truth (',

num2str(ground_truth(1)), '

bpm)']);

 ylim([48 180])

 drawnow;

% pause(.1);

end

timeElapsed = toc;

meanHeartRate =

mean(heartrates);

perDiff = (abs(meanHeartRate -

ground_truth)/ground_truth)*100

;

disp(['Time for execution: ',

num2str(timeElapsed)]);

disp(['Average heart rate: ',

num2str(meanHeartRate)]);

disp(['Percent Difference: ',

num2str(perDiff)]);

